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The master asymptotic behavior of the usual parachor correlations, expressing surface tension � as a power
law of the density difference �L−�V between coexisting liquid and vapor, is analyzed for a series of pure
compounds close to their liquid-vapor critical point, using only four critical parameters ��c�−1, �c, Zc, and Yc,
for each fluid. This is accomplished by the scale dilatation method of the fluid variables where, in addition to
the energy unit ��c�−1 and the length unit �c, the dimensionless numbers Zc and Yc are the characteristic scale
factors of the ordering field along the critical isotherm and of the temperature field along the critical isochore,
respectively. The scale dilatation method is then formally analogous to the basic system-dependent formulation
of the renormalization theory. Accounting for the hyperscaling law �−1

�+1 = �−2
2d , we show that the Ising-like

asymptotic value �a of the parachor exponent is unequivocally linked to the critical exponents � or � by
�a

d−1 = 2
d−�2−�� = �+1

d �here d=3 is the space dimension�. Such mixed hyperscaling laws combine either the expo-

nent � or the exponent �, which characterizes bulk critical properties of d dimension along the critical isotherm
or exactly at the critical point, with the parachor exponent �a which characterizes interfacial properties of d
−1 dimension in the nonhomogeneous domain. Then we show that the asymptotic �symmetric� power law

��c�d−1�c�=D�
�� �L−�V

2�c
��a is the two-dimensional critical equation of state of the liquid-gas interface between

the two-phase system at constant total �critical� density �c. This power law complements the asymptotic

�antisymmetric� form ���−��,c�
�c

pc
= ±D�

c�
�−�c

�c
�� of the three-dimensional critical equation of state for a fluid of

density ���c and pressure p�pc, maintained at constant �critical� temperature T=Tc ��� ���,c� is the specific
�critical� chemical potential; pc is the critical pressure; and Tc is the critical temperature�. We demonstrate the
existence of the related universal amplitude combination D�

c�D�
��d/�1−d�=RD�=universal constant, constructed

with the amplitudes D�
� and D�

c, separating then the respective contributions of each scale factor Yc and Zc,
characteristic of each thermodynamic path, i.e., the critical isochore and the critical isotherm �or the critical
point�, respectively. The main consequences of these theoretical estimations are discussed in light of engineer-
ing applications and process simulations where parachor correlations constitute one of the most practical
methods for estimating surface tension from density and capillary rise measurements.
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I. INTRODUCTION

Most of the phenomenological approaches for modeling
the fluid properties in engineering applications are com-
monly based on the extended corresponding-states principle
�1�. In this scheme, the estimation of thermodynamic prop-
erties can be made using multiparameter equations of state,
that account for increasing molecular complexity by increas-
ing the number of adjustable parameters. Such engineering
equations of state �whose mathematical forms must be com-
patible for practical use in fluid mixture cases�, are then gen-
erally convenient tools to estimate a single phase property
with sufficient accuracy �1�. However, the knowledge of
properties in the nonhomogeneous domain �2�, such as the
surface tension �, the capillary length lCa, the density differ-
ence 
�LV=�L−�V between the coexisting liquid and vapor
phases of respective densities �L and �V, are also of prime

importance to gain confidence in fluid modeling and process
simulations �geological fluid flows, assisted recovery of oil,
storage of green house gases, pool boiling phenomena, mi-
crofluidic devices based on wetting phenomena, etc�. There-
fore, a large number of related phenomenological laws, re-
ferred to as ancillary equations, have been proposed in the
literature �1–3� to calculate such properties in the nonhomo-
geneous domain. This complementary approach generally
leads to unsolvable mathematical differences with values cal-
culated from the equations of state, and increases in a sub-
stantial manner the number of adjustable parameters to ac-
count for complex molecular fluids.

Before focussing on the specific form of ancillary equa-
tions between � and 
�LV �4�, the so-called parachor corre-
lations �1,5�, it is interesting to recall the two well-known
practical interests of the fluid modeling based on the ex-
tended corresponding-states principle. �i� The thermody-
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namic properties of a selected pure fluid are fully specified
from a few fluid-dependent parameters such as, for example,
its critical coordinates Tc �critical temperature�, pc �critical
pressure�, and v̄c �critical molar volume� in the original and
simplest form of the corresponding-states principle �6�. �ii�
The most convenient tools to estimate the fluid phase sur-
face, including the two-phase equilibrium lines, are provided
by the cubic and generalized van der Waals equations �1�.
Our main objective in this introductive discussion is then
only to recall the number and the nature of the most useful
macroscopic parameters used in such engineering equations
of state �for a review see Ref. �7��. For more detailed pre-
sentations of the basic understanding from a rigorous micro-
scopic approach of the molecular interaction and the theoret-
ical background for developing better functional forms of the
pressure-volume relationship see, for example, Refs.
�1,8–10� and the review of Ref. �11�.

It is well known �6� that only the inert gases �Ar, Kr, Xe�
can obey the two-parameter corresponding-states principle
�i.e., an energy unit and a length unit mandatorily needed to
compare dimensionless thermodynamic states for same val-
ues of the dimensionless independent variables, admitting
that the molar mass of each one-component fluid is known�.
This restrictive conclusion is founded on results obtained in
building unique functions of the reduced thermodynamic
variables, examinating many thermodynamics properties
such as the density difference between coexisting liquid and
vapor phases, the saturated vapor pressure curve, the second
virial coefficient, etc.

Considering the modeling based on statistical mechanics
�8–10�, this two-parameter corresponding-states description
can be validated for the restrictive compounds made of
spherical atoms with centrosymmetrical forces �such as pre-
cisely the inert gases mentioned above�. The short-ranged
space �r� dependence of intermolecular pair potentials u�r�
�12� can be written, for example, in the form u�r�
=�LJF

LJ� r
�LJ

� where FLJ is the Lennard Jones �12-6� universal
function �8�. The two quantities �LJ and �LJ are scaling �en-
ergy and length� parameters which characterize a particular
substance. Compounds which obey this kind of universal po-
tential function with two microscopic scaling parameters are
said to be conformal �1,9,10�.

On the other hand, intermolecular potential models with
attractive interaction forces of infinite range have given
physical reality to the famous form �cubic with respect to
volume� of the van der Waals �vdW� equation of state �13�,
separating then the repulsive and attractive contribution to
the pressure-volume relationship estimated from the general-
ized van der Waals theory �7�. Although the two pressure
terms of the original van der Waals equation do not quanti-
tatively represent the true repulsive and attractive forces, the
introduction of two characteristic constants for each fluid—
its actual covolume b, not available to molecular motion due
to a finite diameter of each repulsive molecule, and the am-
plitude a of the pressure decrease due to the intermolecular
attraction—has proven to be extremely valuable for the rep-
resentation of its properties. Thus, after expressing the values
of the van der Waals parameters a and b at the critical point,
the unique function p

pc
= fvdW� T

Tc
, v̄

v̄c
� of the original van der

Waals equation conforms to the two-parameter
corresponding-states principle since v̄c

vdW depends unequivo-
cally on Tc and pc, through the unique value of the critical

compression factor Z0c
vdW=

pcv̄c
vdW

RTc
= 3

8 .
As a practical consequence, formulations of the two-

parameter corresponding-states principle use the critical tem-
perature Tc �providing an energy unit by introducing the
Boltzmann factor kB�, and the critical pressure pc �providing
a length unit through the quantity � kBTc

pc
�1/d

expressed for
space dimension d=3�, as scaling parameters. At the macro-
scopic level, they aim to represent thermodynamic proper-
ties, thermodynamic potentials and related equations of state
as unique dimensionless functions of the new reduced vari-
ables T

Tc
and p

pc
�or v̄

v̄c
vdW�. However, although this principle

only applies to conformal fluids, it is easy to show that it
always generates irreducible difficulties to obtain satisfactory
agreement between theoretical modeling and experimental
results, especially for the two-phase surface approaching the
liquid-gas critical point. For example, the potential param-
eters �LJ and �LJ of a Lennard-Jones �12-6� fluid evaluated
from different thermodynamic and transport properties of the
same real fluid tend to be significantly different from the
ones directly obtained from their relations to the critical
point coordinates �although, according to the molecular
theory, the calculated critical compression factor Z0c

LJ

�0.290 remains the same for all these conformal fluids�.
Moreover, real atoms like Ar, Kr, and Xe are definitively not
conformal �for example, Zc is not strictly a constant number
�9��. Similarly, the well-known breaking up of van der Waals
equation of state occurs immediately, noting that the value
Z0c

vdW=0.375 significantly differs from the Zc values of real
fluids �ranging, for example, from Zc�H2O��0.22 to
Zc�

4He��0.30�, especially in the inert gas case �for example,
Zc�Xe�=0.286�.

As stated above in the development of its simplest form
from fluid state theories, a two-parameter description does
not hold for real atoms and a fortiori for molecules with
more complex shapes and interactions. Indeed, for com-
pounds with nonassociating and nonpolar �or weakly polar�
interactions of nonspherical molecules, also referred to as
normal compounds, deviations from the two-parameter
corresponding-states modeling are most often described by
one additional parameter, the so-called acentric factor, �

=−1−log10�
psat�T=0.7Tc�

pc
�, proposed by Pitzer �14�. The acen-

tric factor was defined from the reduced value p*=
psat

pc
of the

saturated vapor pressure psat�T� at the reduced value T*= T
Tc

=0.7 of the vapor saturation temperature, such that it is es-
sentialy ��0 for inert gases Ar, Kr, and Xe �An inert vapor
condensates at one tenth of the critical pressure at T*=0.7,
while a vapor of more complex molecules condensates at
lower relative pressure, leading to � positive�. As a result,
the larger and more elongated the molecule, the larger �, due
to an increasing contribution of the attractive molecular in-
teraction. Thermodynamic properties of normal compounds
are described by unique functions of the three parameters Tc,
pc, and �.

It is also well established �1,7� that this three-parameter
corresponding state modeling can be accounted for by using
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a three-parameter equation of state, for example, the fre-
quently referred to Soave-Redlich-Kwong �15,16�, or Peng-
Robinson �17�, cubic equations of state. When a third param-
eter is introduced into a cubic equation of state, the critical
compression factor Z0c becomes fluid dependent, as stated
for real fluids. Unfortunately, although a three-parameter
equation can be forced to the correct Zc, only better overall
improvement of the accuracy in estimations of the phase sur-
face is obtained when its calculated value is greater than the
real one �for example, Z0c

RK=0.333 and Z0c
PR=0.307 for

Redlich-Kwong �RK� and Peng-Robinson �PR� equations of
state, respectively�. More generally, such quantitatively inac-
curate calculations are due to the relative rigidity of the cubic
form �which limits the quality of the representation of de-
rivative properties�, added to fundamental limitations of ana-
lytic equations close to the critical point �which generate
mean field behaviors of fluid properties�.

Moreover, precise measurements of the saturation pres-
sure curve psat�T�, introduce the critical limiting �dimension-

less� slope �c,R=� � ln�psat�

� ln�T� �
T=Tc

=
Tc

pc
� �psat

�T �
T=Tc

at Tc as another

fluid characteristic parameter, also known as the Riedel fac-
tor �18�. Anticipating the result of the next section which
introduces the critical number Yc=

Tc

pc
� �psat

�T
�
T=Tc

−1 �see Eq.
�19��, we note the relation �c,R=Yc+1 between the Riedel
factor and the dimensionless number Yc. Therefore, as an
immediate consequence of the real location of the liquid-gas
critical point in the experimental p , v̄ ,T phase surface, the
addition of Zc and �c,R �or Yc� to � appears as a useful
parameter set increment, able to describe deviations from the
two-parameter corresponding-states principle based on Tc
and pc. Obviously, any three-parameter corresponding-states
modeling needs implicit dependence between �, Zc, and �c,R
�or Yc�, which provides a base for a large number of three-
parameter corresponding-states models by developing em-
pirical combinations between �, Zc, and �c,R �or Yc�, such as
ones where Zc is linearly related to � �19� for normal com-
pounds. The constraint to reproduce the critical point loca-
tion in the p ,T diagram, is certainly the most important prac-
tical reason why the three-parameter cubic equations of state
�which allow a fair thermodynamic description of normal
compounds �1�, including their interfacial properties �20��,
are the most popular equations of state developed again to-
day for industrial process design.

However, the three-parameter corresponding-states mod-
eling still remains not appropriate for describing highly polar
and “associating” fluids �such as water or alcohols, for ex-
ample�. At least an additional fourth parameter is needed,
which leads to multiple routes to account for this increasing
complexity of the microscopic molecular interaction. Several
empirical expressions have been proposed for this fourth pa-
rameter, such as the one introducing the Stiel polar factor
�21�, for example. Again a myriad of four-parameter
corresponding-states models can then be defined using Tc, pc,
and practical combinations which provide only two indepen-
dent dimensionless numbers chosen among the critical com-
pression factor, the Pitzer acentric factor, the Riedel factor,
the Stiel polar factor, etc. For example, Xiang �3�, noticing
that polar and nonpolar compounds may have similar �, but

different Zc, or, in other words, that the relation between Zc
and �, that holds for normal fluids, does not hold for polar
and associated fluids, has proposed recently to use the four
parameters Tc, pc, Zc, and �. This latter description can then
be accounted for by using a four-parameter equation of state,
but noting that the results obtained from the four-parameter
equations which are constrained to reproduce the critical
point, are only slightly better than those obtained from the
three-parameter equations of state.

A notable exception, recently proposed by Kiselev and
Ely �22�, is the empirical implementation of the one-
parameter �represented by the Ginzburg number Gi �23��
crossover description in a generalized corresponding-states
model which uses the �four-parameter� Patel-Teja �24,25�
equation of state p

p0c
PT = fPT� T

Tc
, v̄

v̄c
;� ,Z0c

PT� to calculate the clas-
sical behavior of the Helmholtz free energy far away from

the critical point �with the condition
p0c

PTv̄c

RTc
=Z0c

PT

1
3 �. In that

approach, the experimental value of the critical molar vol-
ume v̄c replaces

kBTc

pc
as volume unit, leading to a calculated

critical pressure p0c
PT=Z0c

PT RTc

v̄c
from an empirical correlation

expressing the calculated critical compression factor
Z0c

PT�� ,Zc� as a function of real acentric factor � and real
critical compression factor Zc. A redefinition of the general-
ized corresponding-states principle in the form p

p0c
PT

= fCR� T
Tc

, v̄
v̄c

;� ,Zc ,Gi� only introduces Gi as an additional
corresponding-states parameter. fCR is a unique function,
which accounts for a phenomenological crossover model that
incorporates singular behavior in the critical region, and
transforms into an analytical equation of state far away from
the critical point. Thus, it is assumed that the Ginzburg num-
ber Gi�� ,Zc ,Mmol� can also be expressed as a function of the
acentric factor �, the critical compression factor Zc, and the
molar mass Mmol of the fluid. As a final result, the unique
four-parameter crosssover equation p

p0c
PT = fCR� T

Tc
, v̄

v̄c
;� ,Zc�,

similar to the classical four-parameter equation of state, is
able to predict with acceptable accuracy the phase surface
both near to and far from the critical point, only using the
real critical parameters Tc, v̄c, Zc, and the acentric factor �.
However, in such an empirical modeling, the real pc and
� �psat

�T
�
T=Tc

parameters can never be accounted for as entry
parameters which characterize the one-component fluid.

From this brief status on the extended corresponding-
states principle, it seems undeniable that a minimum set
made of four parameters is necessary to characterize each
one-component fluid, thus identifying among a large set of
useful fluid-dependent parameters the four critical param-
eters Tc, pc, Zc, and �c,R �or Yc�. If the introduction of Tc, pc,
v̄c, seems the natural way to define the energy and length
units and a related characteristic critical compression factor,
the arbitrary choice of the fourth parameter confers an em-
pirical nature to any extended corresponding-states approach
�and to any functional form of the equation of state based on
this approach, especially when the calculated compression
factor Z0c differs from the real one�.

It is then remarkable that the minimal set made of four
critical parameters Tc, pc, Zc, and Yc could be alternatively
identified from a phenomenological analysis �26–30� of the
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singular behavior of these fluids approaching their liquid-gas
critical point. Moreoever, a fundamental distinction occurs in
this analysis since the introduction of the two dimensionless
critical numbers Zc and Yc underlines their respective
asymptotic scale-factor nature �see below and Refs. �26,27��.
As an essential consequence, the two-scale factor universal-
ity �31� estimated by the renormalization group method of
field theory �32� is thus accounted for in building the master
�i.e., unique� dimensionless crossover functions �33–35� of
the renormalized �i.e., rescaled� dimensionless field variables
�36,37�.

How to account for all these �practical and theoretical�
results in developing appropriate forms of ancillary equa-
tions remains a difficult task, which was the object of few
basic studies in regards to the practical importance of the
two-phase fluid properties. For example, the use of parachor
correlations between � and 
�LV is a convenient way of
estimating surface tension from density measurements.
Moreover, recent model calculations �38� and phenomeno-
logical estimations �39� have shown the strength of the para-
chor correlations in the case of fluid mixtures.

For pure fluids, parachor correlations have the following
form:

� = � Pa,e

Mmol

�LV��a,e

, �1�

where Mmol=NAmp̄. NA is Avogadro number and mp̄ is the
molecular mass. The subscript p̄ refers to a molecular prop-
erty, i.e., a property of the constitutive particle �atoms or
molecules�. The amplitude Pa,e, called the “parachor,” is a
fluid-dependent property, while the parachor exponent �a,e is
expected to have a unique numerical value for all fluids. For
a review of the �a,e and Pa,e values, see, for example, Ref.
�5�. Subscript e indicates an effective value which corre-
sponds to a given finite experimental range along the vapor-
liquid equilibrium �VLE� line. Indeed, the introduction in the
early 1920’s of Eq. �1� was based on experimental observa-
tions close to the triple point where �V	0��L �and then

�LV	�L�, leading to the first proposed value of �a,e=4 for
the effective parachor exponent �4�. It was then noted that
the fluid parachor Pa,e is approximately a constant value in a
large �in absolute scale� temperature range, leading to vari-
ous attempts for its estimation by methods issued from group
contribution methods, or extended corresponding-states prin-
ciple. Accordingly, the parachor must be �at least� related to
the four parameters involved in engineering equations of
state.

However, it is now well-established �40� that the validity
range of such a scaling form �1� is strictly restricted to the
asymptotic approach of the liquid-gas critical point, where �
and 
�LV simultaneously go to zero �41,42� with the univer-
sal features of the uniaxial three–dimensional �3D� Ising-like
systems �31,32�. Indeed, in that liquid-gas critical domain, it
is expected that 
�LV and � behave as 
�LV
�Tc−T�� and
�
�Tc−T��, respectively, where the critical exponents �
and � take the following universal values at d=3: ��0.326
�43� and �= �d−1���1.26 �41,43�. To obtain the latter scal-
ing law, use has been made of �
�d−1 �41,42�, where the

power law �
�Tc−T�−� �with ��0.630 �43�� accounts for
the asymptotic singular behavior of the correlation length �.
Obviously, the asymptotic Ising-like form of Eq. �1� reads
�� �
�LV��/�, with �a,e→�a= �

� �3.87 when �→0 and

�LV→0, i.e., a universal power law behavior with universal
critical exponent �a of value which differs significantly from
�a,e=4, for example.

Therefore, despite the fact that the parachor correlations
were initially developed to estimate the surface tension of
liquids close to their triple point, their theoretical justification
is well understood only close to the critical point. That infers
a paradoxical situation when the main objective is to esti-
mate a single value of Pa,e in the largest two-phase domain.
Moreover, when we consider an intermediate nonhomoge-
neous domain between critical point and triple point, it also
seems difficult to invoke crossover arguments related to the
classical mean-field theory of critical phenomena, as we will
discuss in the final part of this paper. For example, effective
values �e�0.36–0.30, �e�1.20–1.30, and �a,e�3.5–4,
are observed in an extended temperature range which goes to
the triple point �see the Appendix�. Such values significantly
depart from mean-field ones �MF= 1

2 , �MF= 3
2 , and �a,MF=3

�44�. In addition to these differences, the mean-field expo-
nents do not satisfy hyperscaling �i.e., explicit d dependence
of some scaling laws�, a difficulty precisely enhanced in the
case of mean field exponents for the interfacial properties
where an explicit �d−1� dependence also appears in “mixed”
hyperscaling laws �for example, see below Eq. �51��.

Today, the estimation of parachors, valid in a wide tem-
perature range, from a limited number of fluid-dependent
parameters, still seems an unsolved complex challenge. The
main concern of the present paper is to clarify this situation
by only using the four well-defined critical parameters Tc, pc,
Zc, and Yc in an asymptotic analysis of the parachor correla-
tions approaching the critical point. A joint objective is to
suppress asymptotical requirement for any other unknown
adjustable parameter in a well-defined extension of the VLE
line close to the critical point, substituting then the two-
scale-factor universality of dimensonless fluids to the four-
parameter corresponding-states principle to justify the ob-
served master �i.e., unique� parachor function.

The paper is organized as follows. In Sec. II, we observe,
by application of the scale dilatation method, the asymptotic
master critical behaviors for interfacial properties close to the
critical point. The scale dilatation method only uses a mini-
mal set made of four critical scale factors �neglecting here
quantum effects in light fluids such as helium 3 �30��, noted
Qc

min= ��c
−1 ,�c ,Zc ,Yc� and defined in the next paragraph �see

Eqs. �16�–�19��. In Sec. III, we unambiguously separate each
scale factor contribution in the estimation of either the sur-
face tension amplitude �only Yc dependent�, or the Ising-like
parachor �only Zc dependent�. We conclude in Sec. IV. The
Appendix gives a complementary practical route to extend
the analysis over the complete VLE line.

II. MASTER SINGULAR BEHAVIORS OF INTERFACIAL
PROPERTIES

A. Asymptotic singular behavior of interfacial properties

Close to the gas-liquid critical point, the asymptotic sin-
gular behavior of thermophysical properties are generally
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characterized by Wegner-like expansions �45� in terms of the
following two relevant physical variables �41,46�:


�* =
T − Tc

Tc
�2�

and


�̃ =
� − �c

�c
, �3�

where subscript c refers to a critical property. 
�* and 
�̃ are
the temperature field and the order parameter density, respec-
tively, of the liquid-gas transition. Therefore, in the non-
homogeneous phase �
�*�0�, along the critical isochore
��=�c�, the asymptotic singular behaviors of the symme-
trized order parameter density 
�LV and of the interfacial
tension � read as follows:


�LV = 2�cB�
�*��
1 + �
i=1

i=�

Bi�
�*�i
� , �4�

� = �0�
�*��
1 + �
i=1

i=�

�i�
�*�i
� . �5�

The Ising-like universal values of the critical exponents are
��0.326, ��1.26, while 
�0.51 �43� is the Ising-like uni-
versal value of the lowest confluent exponent. The ampli-
tudes B, Bi, �0, and �i, are fluid-dependent quantities which
benefit from accurate theoretical predictions of their univer-
sal combinations and universal ratios only valid in the Ising-
like preasymptotic domain �47,48�, where the Wegner expan-
sion is restricted to the first order term of the confluent
corrections to scaling governed by the exponent 
.

Now, we introduce the squared capillary length �lCa�2

�also called the Sugden factor �49,50�, noted Sg�, related to �
and 
�LV by

�lCa�2 � Sg =
2�

g
�LV
, �6�

where g is the gravitational acceleration. Equation �6� ex-
presses the balance between interfacial forces and volumic
forces which define the shape and position of the liquid-gas
interface in a gravity field of constant acceleration g. The
asymptotic singular behavior of Sg can be read as a Wegner-
like expansion

Sg = S0�
�*��
1 + �
i=1

i=�

Si�
�*�i
� �7�

leading to the scaling law

� = � − � �8�

with ��0.934, and to the canonical amplitude combination

S0 =
�0

g�cB
. �9�

Equations �4�–�9� are of basic interest for measurement tech-
niques of interfacial properties as well as for theoretical

crossover descriptions when the temperature distance to Tc
takes a finite value �see Appendix�.

The singular behavior of the Sugden factor Sg as a func-
tion of the temperature distance Tc−T was illustrated in Fig.
1 of Ref. �51� for about twenty pure compounds selected
among inert gases, normal compounds and highly associat-
ing polar fluids. For Sg and � data sources see the reviews of
Refs. �51–53,73,54�. Here, we have added the data sources
�55–60� of some hydrofluorocarbons �HFCs� and hydrochlo-
rofluorocarbons �HCFCs� for related discussion in the Ap-
pendix. The raw data for the surface tension ��Tc−T� and the
symmetrized order parameter density 
�LV�Tc−T� are re-
ported in Figs. 1�a� and 1�b�, respectively. For the 
�LV data
sources see for example the references given in Refs.
�5,54–60�. In each case, the universal Ising-like slope of the
asymptotic singular behavior appears compatible with the
experimental results. From these figures, it is also expected
about one-decade variation for each fluid-dependent ampli-
tude 2�cB�Tc�−� and �0�Tc�−� of the leading terms of Eqs. �4�
and �5�, respectively.

As in the Sugden factor case �51�, it also appears evident
that the raw data used in present Fig. 1 cover a large tem-

FIG. 1. �Color online� �a� Singular behavior �log-log scale� of
the interfacial tension � �expressed in N m−1� and �b� singular be-
havior of the symmetrized order parameter density 
�LV �expressed
in kg m−3�, as a function of the temperature distance Tc−T �ex-
pressed in K�, for one-component fluids �see text, Appendix and
references in Table I�. The inset table gives color indexation of each
selected fluid. The temperature axis is labeled by vertical arrows
which indicate the practical values T=0.99Tc and T=0.7Tc, respec-
tively �see text for details�.
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perature range of the coexisting liquid-vapor phases since
this range approaches the triple point temperature TTP. We
have then adopted the same practical distinction between
asymptotic critical range and triple point region in the tem-
perature axis, using vertical arrows for the temperature dis-
tances where T=0.7Tc �i.e., the temperature distance where
the fluid-dependent acentric factor � is defined� and T
=0.99Tc. In a large temperature range defined by 0.3

 �
�*�
1−

TTP

Tc
, the nonuniversal nature of each fluid is cer-

tainly dominant �see, for example, the Appendix�, while, in
the temperature range �
�*�
0.01, the singular behavior de-
scriptions by Wegner-like expansions, and asymptotic two-
scale-factor universality of their restricted two term form,
hold.

Selecting � and 
�LV measurements at identical values of
Tc−T, we have constructed the corresponding �-
�LV data
pairs. The singular behavior of ��
�LV� is illustrated in Fig.
2�a�, while the corresponding behavior of ��
�LV�−�a as a
function of 
�LV is given in Fig. 2�b�, as usually made to
enlighten the contribution of the confluent corrections to
scaling and to have a better estimation of the uncertainty
attached to the value of the leading amplitude. Simulta-
neously, from xenon to n-octane, we also underline about a
three-decade variation for this quantity, leading to about a
half-decade variation of the effective parachor (expressed in
�J mole−1 m3�a−2� unit when �, 
�LV, and Mmol are ex-
pressed in �J m−2� �or �N m−1��, �kg m−3�, and �kg mole−1�,

respectively). Accordingly, by straightforward elimination of
�
�*� in Eqs. �4�–�7�, we find the exact Ising-like asymptotic
form

� = � Pa,0

Mmol

�LV��a

�1 + Pa,1�
�LV�
/� + O��
�LV�2
/��� ,

�10�

where �as previously mentioned in the introduction part�

�a =
�

�
=

�

�
+ 1 � 3.87. �11�

The Ising-like asymptotic value Pa,0 of the effective parachor
Pa,e can be estimated using the leading terms of Eqs. �4�–�7�
and reads

Pa,0 = ��0��/� Mmol

2�cB
= �gS0��/� Mmol

2��cB�1−�/� , �12�

depending on the pair of selected variables, either �� ;
�LV�
or �Sg ;
�LV�. Equations �10� and �11� clearly demonstrate
the critical scaling nature of Eq. �1�, with an essential con-
sequence: the parachor Pa,0 is a nonuniversal leading ampli-
tude which must satisfy the two-scale-factor universality of
the Ising-like universality class. How to estimate the para-
chor thus appears as a basic question in a sense that only two
nonuniversal leading amplitudes are sufficient to characterize
the complete singular behavior of a one-component fluid
when T→Tc and 
�LV→0.

B. The basic set of fluid-dependent parameters

As proposed by Garrabos �26,27�, a phenomenological
response to the above basic question relies on the hypothesis
that the set

Qc,ap̄

min = �pc,vp̄,c,Tc,�c�� , �13�

of four critical coordinates which localize the gas-liquid
critical point on the p ,vp̄ ,T phase surface contains all the
needed critical information to calculate any nonuniversal
leading amplitude of the selected fluid �here neglecting quan-
tum effects �30� to simplify the presentation�. The mass mp̄
of each molecule is also hypothesized known to infer the
total amount N of fluid particles by measuring the fluid total
mass M =Nmp̄. p �pc� is the �critical� pressure. vp̄= v̄

NA

=
mp̄

�
�vp̄,c=

mp̄

�c
� is the molecular volume �critical volume�. The

total volume V=Nvp̄ is the extensive variable conjugated to
p. �c�=�� �p

�T
�vp̄,c�CP is the common critical direction in the

p ;T diagram of the critical isochore and the saturation pres-
sure curve psat�T� at critical point �CP�, thus defined by

�c� = � �p

�T
�

�c,T→Tc
+

= �dpsat

dT
�

T→Tc
−
. �14�

Rewriting Eq. �13� as a four-scale-factor set

Qc
min = ��c

−1,�c,Zc,Yc� , �15�

where

FIG. 2. �Color online� �a� Asymptotic singular behavior of � as
a function of 
�LV obtained from Fig. 1�b�. As in �a� for the con-
fluent quantity �

�
�LV��a
�see caption of Fig. 1 and text for details and

the inset table for fluid color indexation�.
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��c�−1 = kBTc 
 energy, �16�

�c = � kBTc

pc
�1/d


 length, �17�

Zc =
pcmp̄

kBTc�c
, �18�

Yc = �c�
Tc

pc
− 1, �19�

we introduce the energy unit ��c
−1�, the length unit ��c�, the

�isothermal� scale factor �Zc� of the order parameter density
�see Eq. �3�� along the critical isothermal line, and the �iso-
choric� scale factor �Yc� of the temperature field �see Eq. �2��
along the critical isochoric line.

Table I provides values of the critical parameters involved
in Eqs. �13� and �15� for the 26 pure fluids selected in this
paper. Indeed, our dimensional scale units of energy ��c�−1

�Eq. �16��, and length �c �Eq. �17��, provide a description
equivalent to Tc and pc in the basic �two-parameter�
corresponding-states principle. The customary dimensionless

forms of � and 
�LV are �*= ��c�d−1�c� and 
�̃LV=

�LV

2�c
. As

for the Sugden factor case, Fig. 3 gives distinct curves of
�*�
�̃LV�−�a as a function of 
�̃LV, which confirms the fail-
ure of any description based on the two-parameter
corresponding-states principle. Moreover, the direction dif-
ference �a,MF−�a�−0.87 with a classical power law of
mean field exponent �a,MF=3 also disagrees with experimen-
tal trends at large temperature distance, as illustrated in Fig.
3.

On the other hand, the set Qc
min �Eqs. �15�–�19�� conforms

to the general description provided by appropriate four-
parameter corresponding-states modeling as mentioned in
our Introduction. For example, we retrieve that the scale fac-

tor Yc �Eq. �19�� is related to the Riedel factor �c,R=�c�
Tc

pc
by

Yc+1=�c,R. However, as we will extensively show in this
paper, the scale dilatation approach brings a theoretical jus-
tification to these critical parameters, initially introduced
only to build extended corresponding-states principle.

First, the microscopic meaning of ��c�−1 and �c, related to
the minimum value ��
��c�−1� of the interaction energy be-
tween particle pairs at equilibrium position �re
 1

2�c�, takes
primary importance. Thus, �c appears as the mean value of

TABLE I. Critical parameters for the selected one-components fluids.

Fluid
mp̄

�10−26 kg�
Tc

�K�
pc

�MPa�
�c

�kg m−3�
�c�

�MPa K−1�
��c�1

�10−21 J�
�c

�nm� Zc Yc

Ar 6.6335 150.725 4.865 535 0.19025 2.08099 0.7535 0.289871 4.89423

Kr 13.9153 209.286 5.500 910 0.1562 2.8895 0.8069 0.291065 4.94372

Xe 21.8050 289.740 5.840 1113 0.1185 4.0003 0.8815 0.286010 4.87914

N2 4.6517 126.200 3.400 314 0.1645 1.74258 0.8002 0.289078 5.10585

O2 5.3136 154.58 5.043 436 0.1953 2.13421 0.7508 0.287972 4.98641

CO2 7.3080 304.107 7.732 467.8 0.173 4.19907 0.8289 0.274352 6.13653

SF6 24.2555 318.687 3.76 741.5 0.084 4.40062 1.054 0.281243 6.11960

H2O 2.9969 647.067 22.046 322.8 0.2676319 8.93373 0.7400 0.229117 6.85520

C2H4 4.658 282.345 5.042 214.5 0.11337 3.89820 0.91781 0.28131 5.34856

CH4 2.6640 190.564 4.59920 162.7 0.14746 2.63102 0.8301 0.285752 4.981927

C2H6 4.99324 305.322 4.872 206.58 0.10304 4.21554 0.95290 0.27935 5.45505

C3H8 7.32248 369.825 4.2462 220 0.0770 5.106 1.063 0.27679 5.70688

n-C4H10 9.6518 425.38 3.809 229 0.0643 5.87301 1.155 0.273352 6.17774

i-C4H10 9.6518 407.85 3.65 225 0.0643 5.63102 1.155 0.278056 6.18173

C5H12 11.9808 469.70 3.3665 232 0.0511 6.48491 1.244 0.270875 6.12956

C6H14 14.3100 507.85 3.0181 234 0.043658 7.00666 1.319 0.266670 6.30719

C7H16 16.6393 540.13 2.727 234 0.038068 7.45731 1.398 0.262180 6.64356

C8H18 18.9685 568.88 2.486 232 0.033768 7.85424 1.467 0.258978 6.82776

HFC-32 8.6386 351.26 5.782 423 0.124088 4.849676 0.9431 0.243384 6.53842

HCFC-123 25.3948 456.82 3.666 554 0.05711 6.30764 1.1982 0.266439 6.11647

HCFC-124 22.6622 395.35 3.615 566 0.063205 5.45840 1.1473 0.265179 5.91234

HFC-125 19.9301 339.17 3.618 568 0.078665 4.68275 1.0898 0.271100 6.37446

HFC-134a 16.9426 374.30 4.065 512.7 0.083109 5.16777 1.0833 0.259940 6.65260

HCFC-141b 19.42 477.31 4.250 460 0.060522 6.58998 1.1575 0.272268 5.79119

HCFC-142b 16.6876 410.26 4.041 447 0.071972 5.66426 1.1191 0.266338 6.30691

HFC-152a 10.9680 386.41 4.512 369 0.086345 5.33497 1.0574 0.251384 6.39463
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the finite range of the attractive interaction forces between
particles. So that,

vc,I = ��c�d �20�

is the microscopic volume of the critical interaction cell at
the exact �T=Tc and p= pc� critical point. Using thermody-
namic properties per particle, it is immediate to show that the
critical interaction cell is filled by the following critical num-
ber of particles:

Nc,I =
1

Zc
�21�

since, rewriting Eq. �18�, we have

kBTc

pc
= vc,I = Nc,Ivp̄,c =

1

Zc

mp̄

�c
. �22�

Second, since in the critical phenomena description only one
length scale unit is needed to correctly express the nontrivial
length dimensions of thermodynamic and correlation vari-
ables �31�, the above microscopic analysis is of primary im-
portance. By chosing �c, the two dimensionless scale factors
Zc and Yc are then characteristic properties of the critical
interaction cell of each one-component fluid. Especially, 1

Zc

takes similar microscopic nature of the coordination number
in the lattice description of the three-dimensional Ising sys-
tems, while �c takes similar microscopic nature of their lat-
tice spacing aIsing. On the basis of this microscopic under-
standing, we are now in position to estimate the Ising-like
parachor from Qc

min, using scale dilatation of the physical
fields �26�.

C. The scale dilatation of the physical variables

The asymptotic master critical behavior for interfacial
properties when T→Tc and 
�LV→0, can be observed by
using the following dimensionless physical quantities:


�* = kB�c�Tc − T� , �23�


�p̄
* = �c��p̄ − �p̄,c� , �24�


m* = ��c�d�n − nc� = �Zc�−1
�̃ �25�

and the following master �rescaled� quantities:

T* = Yc
�*, �26�

H* = �Zc�−d/2
�p̄
* = �Zc�−1/2
�̃�, �27�

M* = �Zc�d/2
m* = �Zc�1/2
�̃ , �28�

�* � �*, �29�

Sg*
* = g*�Zc�−3/2�lCa

* �d−1, �30�

where, in Eqs. �26�–�30�, we have only used the two scale
factors Yc and Zc to rescale the dimensionless quantities,
with �*= ��c�d−1�c�; lCa

* = ��c�−1lCa, and g*=mp̄�c�cg.
�p̄ ��p̄,c� is the molecular chemical potential �critical mo-
lecular chemical potential�. n �nc� is the number density
�critical number density�. The normalized variable n= N

V ,
where �p̄ is conjugated to the total amount of matter N, is
then related to the order parameter �number� density express-
ing thermodynamic properties per molecule. As mentioned in
the Introduction, the �mass� density �= M

V , where �� is con-
jugated to the total mass of matter M, is related to the order
parameter density, but expressing thermodynamic properties
per volume unit. Here, we have noted ��=

�p̄

mp̄
the chemical

potential per mass unit. The dimensionless form of �� is
�̃�=��

�c

pc
, while the one of �p̄ is �p̄

*=�p̄�c, with 1
Zc

�p̄
*= �̃�. g

is the gravitational acceleration needed to perform conven-
tional measurements by capillary rise or drop techniques
�2,49�. g* is the dimensionless gravitational acceleration,

where we have used �c�mp̄�c�1/2
�mass�length�2

energy
�1/2

as a time
unit.

In Eqs. �26� and �27�, Yc and Zc are two independent scale
factors that dilate the temperature field along the critical iso-
chore and the ordering field along the critical isotherm, re-
spectively. These Eqs. �26� and �27� are formally analogous
to analytical relations �61� linking two relevant fields of the
so-called �d=3

4 �n=1� model with two physical variables of a
real system belonging to the universality class. That implic-
itely imposes that only one single microscopic length is char-
acteristic of the system �31�, which then can be related to the
inverse coupling constant of the model taking appropriate
length dimension, precisely for the d=3 case. When a single
length is the common unit of the thermodynamic and corre-
lation functions, the singular part of free energy of any sys-
tem belonging to the universality class remains proportional

FIG. 3. �Color online� Singular behavior �log-log scale� of the
dimensionless quantity �*

�
�̃LV��a
as a function of the symmetrized

order parameter density 
�̃LV; inserted slope: direction difference
�a,MF−�a=−0.87 from �a,MF=3 �see text�; arrow sets in lower
horizontal axis: �
�*�=10−2 and �
�*�=0.3 �see text and caption of
Fig. 1�, the inset table gives the fluid color indexation.
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to a universal quantity which generally refers to the �physi-
cal� value of the critical temperature. In the case of one-
component fluids, the single characteristic length originates
from thermodynamic considerations �see above �c of Eq.
�17��. Accordingly, the universal singular free energy density
is expressed in units of ��c�−1=kBTc �see Eq. �16��. The mas-
ter fields T* and H* have an Ising-like nature similar to the
renormalized fields t and h in the field theory of critical
phenomena.

D. Master crossover behavior for interfacial properties of the
one-component fluid subclass

The observation of the critical crossover behavior of a
master property P* in a P*-T* diagram, generates a single
curve which can be described by a master Wegner-like ex-
pansion P*�T*�. Asymptotically, i.e., for T*→0, the univer-
sal features of fluid singular behaviors are at least valid in the
Ising-like preasymptotic domain �34,47� where only two
asymptotic amplitudes and one first confluent amplitude
characterize each one-component fluid. In our present formu-
lation of the liquid-vapor interfacial properties, we define
MLV

* = �Zc�3/2
mLV
* = �Zc�1/2
�̃LV, 
mLV

* = ��c�d�nL−nV�
= �Zc�−1
�̃LV, 
�̃LV=

�L−�V

2�c
, and we introduce the following

master equations of interest, here restricted to the first order
of the critical confluent correction to scaling to be in confor-
mity with the above universal features:

MLV
* = ZM�T*���1 + ZM

�1��T*�
 + ¯ � , �31�

�* = Z��T*���1 + Z�
�1��T*�
 + ¯ � , �32�

Sg*
* = ZS�T*���1 + ZS

�1��T*�
 + ¯ � �33�

with their interrelation �see Eqs. �8� and �6��

Sg*
* =

�*

MLV
* . �34�

The master asymptotic behaviors of MLV
* and Sg*

* as a
function of �T*� were observed and analyzed in Refs. �29,51�
for several pure fluids. The corresponding master amplitudes
take the values ZM �0.468�±0.002� and ZS�2.47�±0.17�
�for the quoted error bars see Refs. �29,51��. From Eq. �34�,
the leading master amplitude for the surface tension case is
then Z�=ZMZS�1.156�±0.087�. Here, using a method simi-
lar to the one applied in the Sugden factor case, we show in
Table II that this master value is compatible with the results
obtained from experiments performed sufficiently close to
the critical point. Only surface tension measurements already
analyzed by Moldover �53� and Gielen et al. �52� are con-
sidered here. The respective effective values �e and �0,e of
the exponent-amplitude pair corresponding to data fits by an
effective power law �=�0,e�
�*��e are reported in columns 2
and 3, when needed for the present analysis �see the corre-
sponding Refs. �62–70� in column 4�. The estimated values
of the leading amplitude �0 for the Ising value ��1.260 of
the critical exponent are given in column 5. The references
reported in column 8 precise the origin of these estimations,

which depend mainly on the accuracy of the interfacial prop-
erty measurements in the vicinity of �
�*��0.01. For ex-
ample, in the present work we have estimated �0 by the

relation �0=
�0,e�0.01��e−1.260

1.1 , using data sources of columns 2
and 3. Our estimation is then compatible with surface tension
measurements at �
�*�=0.01, neglecting confluent correc-
tions in Sugden factor measurements �51�, and averaging �for
all selected fluids� the confluent correction contributions in
density measurements to 10% at this finite distance to the
critical temperature �29�. The values of Z�,exp
=�0��c�2�c�Yc�−� �column 6� calculated from these �0 esti-
mations are in close agreement with our master value Z�

=1.156. The residuals �Z�,exp=100�Z�,exp

Z�
−1� �column 7� ex-

pressed in %, are of the same order of magnitude than the
experimental uncertainties �see, for example, Refs. �52,53��.
We note that the +1% residuals between the experimental
mean value �Z�,exp�=1.167 and the estimated master one
Z�=1.156, have a standard deviation �±5.4% � comparable
to the experimental uncertainties �
7.5% �. However, this
good agreement on the central value is noticeable in regards
to significant contributions of confluent corrections, as re-
flected by effective exponent values �e	1.28–1.31 larger
than ��1.260 at finite distance from Tc �see also a comple-
mentary discussion related to the analysis of data at large
distance from Tc given in the Appendix�.

Similarly, each confluent amplitude ZM
�1�, Z�

�1�, and ZS
�1�,

takes a master constant value for all one-component fluids.
Among all ZP

�1�, only one is independent and characteristic of
the pure fluid subclass.

Despite their great interest for the validation of theoretical
predictions, the exact forms of Eqs. �31�–�33� are not essen-
tial to understand the independent scaling role of the two
scale factors Yc and Zc. Moreover, our present interest is
mainly focused on the scaling nature of Zc. More precisely,
by a variable exchange from 
�̃ to �Zc�1/2
�̃, the expected
master behavior must be observed when the master order
parameter density M*= �Zc�1/2
�̃ is used as an x axis, gen-
erating “collapsed” curves of master equation P*�M*� in the
Ising-like preasymptotic domain, i.e., for M*→0. Usually,
such a master behavior of the singular fluid �bulk� properties
occurs along the critical isothermal line T=Tc, i.e., for T*

=
�*=0, which provides the disappearance of the scale fac-
tor Yc and which only preserves the contribution of the scale
factor Zc in the determination of the fluid-dependent ampli-
tudes �27,28�. However, in the nonhomogeneous domain, the
order parameter density spontaneously takes a finite value to
distinguish the two coexisting phases at equilibrium. Thus,
along the critical isochore, it is also possible to observe the
master behavior of any singular �interfacial� property ex-
pressed as a function of the “symmetrized” order parameter
density, starting with the surface tension as a typical ex-
ample.

From � and 
�LV at identical Tc−T, we can construct data
points of master coordinates �*= ��c�d−1�c� and MLV

*

= �Zc�1/2 
�LV

2�c
in the �*-MLV

* diagram. As illustrated in Fig.
4�a�, all these data collapse to define a master behavior of
�*�MLV

* � for MLV
* →0. This collapse is well enlightened in

Fig. 4�b� which illustrates the corresponding master behavior
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of �*�MLV
* �−�a, without any reference to a fitting master

equation. To have a better appreciation of the real tempera-
ture range of the VLE domain, the values of �
�*�=0.01 and
�
�*�=0.3 are also given by �fluid-dependent� arrows in the
MLV

* axis.
Obviously, using Wegner-like expansions to eliminate T*

between Eqs. �31� and �32�, the leading power law of �* as
a function of MLV

* reads

�* = Z̃��MLV
* ��/��1 + O��MLV

* �
/��� , �35�

where Z̃�=
Z�

�ZM��/� �21.88. This asymptotical amplitude is il-

lustrated by an arrow in the vertical axis of Fig. 4�b� and the
related horizontal dashed �blue� line indicates clearly that the
observed master behavior at finite distance to the critical
point seems in “asymptotical” agreement.

In addition, the formal analogy between the basic hypoth-
eses of the renormalization theory and the scale dilatation

TABLE II. Effective values of the critical exponent �column 2� and asymptotic amplitudes of interfacial
tension �column 3� from references given in column 4. Related estimations of the leading asymptotic ampli-
tude �0 �column 5� �see text for details�. Calculated values of the master amplitudes Z�,exp

=�0��c�2�c�Yc�−� �column 6� of the master interfacial tension �see Table I for the values of �c, �c, and Yc�.

The % differences �Z�,exp=100�Z�,exp

Z�

−1� from Z�=1.156 estimated from universal amplitude combina-

tions are given in column 7. For references see column 8.

Fluid �e

�0,e

�10−3 N m−1� Ref.
�0

�10−3 N m−1� Z�,exp

�Z�,exp

�%� Ref

Ar 31.55 1.162 0.5 �59�
30.48 1.123 −2.9 �52�

1.281 38.07 �62� 31.42 1.158 0.1 This work
1.277 37.78 �64� 31.76 1.170 1.2 This work

Xe 45.69 1.179 2.0 �53�
45.61 1.177 1.8 �52�

1.302�±0.006� 62.9�±1.8� �66� 47.1 1.215 5.1 This work
1.290 53.9 �65� �from �63�� 42.68 1.101 −4.8 This work

1.287�±0.017� 54.6�±0.1� �65� 43.83 1.131 −2.2 This work
N2 25.75 1.212 4.8 �52�
O2 34.04 1.186 2.6 �52�
CO2 70.05 1.209 4.6 �53�

65.93 1.138 −1.5 �52�
1.26 76 �52� �from �67�� 69.1 1.193 3.2 This work
1.281 84.72 �69� 69.92 1.207 4.4 This work

SF6 47.85 1.230 6.4 �53�
44.09 1.134 −1.9 �52�

1.285�±0.016� 55.13�±2.6� �68� 46 1.183 2.3 �52�
1.285�±0.016� 55.13�±2.6� �68� 44.64 1.148 −0.7 This work

1.286 54.28 �70� 43.78 1.126 −2.6 This work
CBrF3 1.279 54.05 �70� 45.02 1.106 −4.3 This work
CClF3 1.30 58.84 �69� 44.5 1.135 −1.8 This work

1.283 52.53 �70� 42.96 1.096 −5.2 This work
CHClF2 1.283 69.03 �70� 56.44 1.139 −1.5 This work
CCl2F2 1.283 59.63 �70� 48.76 1.172 1.4 This work
CCl3F 1.263 63.24 �70� 56.78 1.196 3.5 This work
H2O 218 1.135 −1.8 �53�

220.7 1.149 −0.6 �52�
CH4 30.22 1.012 −12.4 �52�
C2H4 45.08 1.166 0.8 �53�
C2H6 45.15 1.145 −1.0 �53�
i-C4H10 45.9 1.159 0.2 �59�
mean 1.167 1.0
standard 0.062 5.4
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method also makes it easy to probe that the effective fluid
crossover behavior estimated from the massive renormaliza-
tion scheme is consistent with the asymptotical power law of
Eq. �35� when MLV

* →0. As a matter of fact, along the criti-
cal isochore, the theoretical estimations of the fluid master
behaviors in a whole thermal field range 0� �T*��� can be
made using the recent modifications �34,35� of the crossover
functions calculated by Bagnuls and Bervillier �33� for the
classical-to-critical crossover of the Ising-like universality
class. However, as already noted in the Sugden factor case
�51�, the theoretical function giving the classical-to-critical
crossover of the interfacial tension is not available. Thus, to
estimate �th

* , we must use two alternative routes, introducing
the theoretical estimations of either Mth

* �T*�0� or �th
* �T*

�0�.

A first straightforward route consists in using as an entry
quantity the theoretical value Mth

* of the master order param-
eter density, admitting then that Mth

* �T�0��MLV
* ��T��, as

already validated at least in the Ising-like preasymptotic do-
main �T��LPAD

�1f� �see Ref. �29��. As a result, the theoretical
parachor function reads

�th,M
* = Z̃��Mth

* ��/� �36�

justifying precisely the dashed blue curves in Figs. 4�a� and
4�b�, for the complete MLV

* range. Unfortunately, at large
values of �T�, the theoretical function Mth

* �T*�0� is cer-
tainly not able to reproduce the experimental behavior of
MLV

* ��T�� and, in the absence of this dedicated analysis, we
cannot easily indicate the true extension of the MLV

* range
where the identity Mth

* �T�0��MLV
* ��T�� holds.

To pass round this difficulty, a second route combines the
theoretical functions �th

* �T*�0� and Mth
* �T*�0� in a whole

thermal field range 0� �T*���, to infer numerically the
function �th

* �Mth
* � by exchanging the �T*� dependence of �th

*

by the Mth
* dependence of �T*� �i.e., reversing the function

Mth
* �T*�0��. Anticipating the introduction of the universal

number R��
− recalled below, the asymptotic scaling form of

the renormalized interfacial tension

�th,l
* = R��

− �lth
* �Mth

* ��1−d �37�

provides the correct asymptotic behavior of lth
* �Mth

* � in the
Ising limit Mth

* →0, as illustrated by the full red curves in
Figs. 4�a� and 4�b�. However, in spite of the increasing dif-
ference observed in Fig. 4 between these two theoretical es-
timations, or between them and the observed master behav-
ior, when MLV

* increases, we can now give a well-defined
estimation of the effective extension of the VLE domain
where the master crossover behavior of �* has physical
meaning.

Indeed, similarly as in our previous analysis of Sg, the
universal prefactor of Eq. �37� accounts for the “Ising-like”
behaviors of the correlation length ��
�*�0� and the sur-
face tension ���
�*��, where we have used the universal ratio
��
�*�0�

��
�*�0� =1.96 and the universal amplitude combinations

given by the products of the interfacial tension by the
squared correlation length �52,53�, i.e.,

R��
± = lim��c���
�*�����
��
�*����d−1�
�*→0±, �38�

where R��
+

�0.376= �1.96�2R��
− , so that R��

−
�0.979 �for the

estimated error bars see also Ref. �51��. The superscripts �
refer to the singular behavior of � above �	� or below ���
Tc. Equation �38� means that the interfacial energy of a sur-
face area �d−1 tends to a universal value �expressed in units
of ��c�−1� for any system belonging to the Ising-like univer-
sality class �we recall that the thickness of the interface is
then of order ��
�*�0��. In such a description, the Wegner-
like expansion of the correlation length, along the critical
isochore, above and below Tc, reads

FIG. 4. �Color online� �a� Master singular behavior �log-log
scale� of the renormalized surface tension �*=�* �Eq. �29��, as a
function of the renormalized �symmetrized� order parameter density
MLV

* in the nonhomogeneous domain �see Eq. �28� and text�. �b� As
in �a� for the “confluent” quantity �*

�MLV
* ��a

�see text�. �a� and �b�
Dashed blue curve: Eq. �36�; full red curve: Eq. �37�; full arrow
with label PAD: extension MLV

* �MPAD
�1f� of the Ising-like preas-

ymptotic domain; dotted arrow with label EAD: extension MLV
*

�MEAD
�1f� of the Ising-like extended asymptotic domain. The gradu-

ation of the upper horizontal axis gives l*�T*�0� calculated from
theoretical crossover �see text and Ref. �51��. Arrow sets in lower
horizontal axis: �
�*�=10−2 and �
�*�=0.3, respectively. The inset
table gives the fluid color indexation.
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� = �0
±�
�*�−�
1 + �

i=1

i=�

�i�
�*�i
� , �39�

where the fluid-dependent amplitudes �0
+ and �0

− are such that
�0

+

�0
− �1.96 �see above�, while the contribution of the confluent

corrections is hypothesized the same above and below Tc.
Accordingly, the master correlation length �th

* = �
�c

�where we
neglect here the quantum effects at the microscopic length
scale of the order of �c �30��, can be estimated using the
asymptotical modifications �35,71� of the crossover function
for the correlation length in the homogeneous domain �33�.
This master asymptotic behavior of �* as a function of T*

�0 was analyzed in Ref. �71� for seven different pure fluids,
demonstrating that two specific �th

* values in the range �th
*

�1 provide convenient marks to define �i� the extension of
the Ising-like preasymptotic domain �i.e., �th

* �80�, where
the fluid characterization is exactly conformed to the univer-
sal features calculated from the massive renormalization
scheme and �ii� the extension of the effective fluid master
behavior at finite distance to the critical temperature where
�th

* �3.

Introducing �th
* �T*�0�=

�th
* �T*�0�

1.96 , we can then complete
the restricted two-term master forms of Eqs. �31�–�33� valid
in the Ising-like preasymptotic domain, by the following
two-term equation

�*�T* � 0� = Z�
−�T*�−��1 + Z�

1�T*�
 + . . . � �40�

where Z�
−
�

Z�
+

1.96 �0.291 �with Z�
+
�0.570� and Z�

1=Z�
1,+

=0.377 �71�. The universal features of the interfacial proper-
ties within the Ising-like preasymptotic domain are in con-
formity with the three-master amplitude characterization of
the one-component fluid subclass defined in Ref. �35�. The
related singular behaviors of the dimensionless interfacial
properties of each pure fluid can be estimated only knowing
Yc and Zc. Using now the numerical function �th

* �Mth
* �, we

have also normed the upper x axis in Fig. 4 to illustrate the
singular divergence of �th

* �T*�0� in complete equivalence to
the upper x axis of Fig. 3 in Ref. �51�.

From �T*�=LPAD
�1f� �5�10−4 where �th

* �40 �see Fig. 3 in
Ref. �51��, the MLV

* extension of the preasymptotic domain
is

MLV
* � MPAD

�1f� � 4 � 10−2 �41�

as shown by the arrow labeled PAD in Fig. 4. Within this
Ising-like preasymptotic domain, the agreement between the
two theoretical estimations of �* are �qualitatively� conform
to the three-amplitude characterization of the universal fea-
tures. The quantitative conformity cannot be exactly ac-
counted for within a well-estimated theoretical error bar, due
to the absence of theoretical prediction for the crossover of
the surface tension, the large error bar in the estimation of
the amplitude of the first-order confluent correction term of
the order-parameter density, and hypothesized contribution
of the �homogeneous� confluent corrections in the correlation
length case. Since �c measures the shortened-range of the
microscopic molecular interaction, �*= �

�c
gives the relative

order of magnitude of the true correlation length �. We can
retrieve for the properties of a vapor-liquid interface of thick-
ness 
�, the similar physical meaning of the two-scale factor
universality in the close vicinity of the critical point, i.e.,
when the conditions � �c, or equivalently �* 1, are satis-
fied. Practically, the asymptotic singular behaviors of � �re-
spectively, �*� and 
�LV

* �respectively, MLV
* �, including then

the first order confluent correction to scaling as given by Eqs.
�31�–�33�, are observed when the correlation length in the
nonhomogeneous domain estimated from Eq. �40� is such
that ��40�c or �MLV

* �MPAD
�1f� �0.04; �T*��LPAD

�1f�

�0.0005�, equivalently. This finite extension of the nonho-
mogeneous Ising-like preasymptotic domain, corresponds to
a correlation volume �d of the fluctuating interface �of typical
thickness 
40 nm, see Table I� which contains more than
6�104 “microscopic” �i.e., vc,I� volumes, and therefore, at
least 2�105 cooperative particles for which the microscopic
details of their molecular interaction at the �c scale �typically

1 nm, see Sec. I� are then unimportant �here admitting that
mean number of fluid particles filling vc,I is typically 1

Zc

�3.5�.
Simarly, using �T*�=LEAD

�1f� �0.03 �see Eq. �55� in Ref.
�51��, where �th

* �3, the MLV
* extension of the extended

asymptotic domain is

MLV
* � MEAD

�1f� � 0.16 �42�

as shown by the arrow labeled EAD in Fig. 4. As expected,
the master behavior of �* is readily observed in this ex-
tended critical domain and in the Appendix, we give a con-
venient master modification of Eq. �36� to precisely account
for it. Such an extended domain for the master behavior of
the fluid subclass can still be understood since ��3�c, so
that �d�30vc,I, and then more than 100 particles are in co-
operative interaction. However, it is noticeable that the prac-
tical relative values T=0.99Tc of the temperature distance to
Tc, frequently referred to define the critical region for each
pure fluid, are not inside the effective extension of the ob-
served master singular behavior �see also the Appendix�.

Finally, using �T*�=LCIC�0.2 where the size of the cor-
relation length is approximatively equal to the size of the
critical interaction cell filled by three or four particles, i.e.,
�th

* �1 �see Fig. 3 in Ref. �51��, the related value of the order
parameter density is

MCIC � 0.3 �43�

as illustrated by the vertical dotted line in Fig. 4. We note
that the pratical limit T=0.99Tc with �
2�c, is in between
MEAD

�1f� and MCIC, so that �d
8vc,I only involving 
28 par-
ticles in interaction. Such a microscopic situation makes
questionable the critical nature of the fluid properties mea-
sured at this finite distance to Tc, and more generally, shows
that the range MLV

* �0.3 can be considered as non-Ising-like
in nature. Especially, Fig. 4 indicates unambiguously that the
temperature T=0.7Tc where the acentric factor is defined,
leads to a correlation length smaller than the mean equilib-
rium distance re between two-interacting particles, since the
value �*� 1

2 �see the hatched limit labeled m in the upper x
axis of Fig. 4� corresponds approximatively to �
 1

2�c
re.
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The Appendix provides complementary analysis of this
“nonuniversal” fluid crossover over the complete tempera-
ture range.

The remaining correlative problem, applying the scale di-
latation method to liquid-vapor interfacial measurements, is
to estimate the respective contribution of each scale factor Yc
and Zc in the fluid-dependent amplitudes of the surface ten-
sion, expressed either as a function of �T*�, or as a function of
MLV

* . This problem is treated in the next section.

III. INDEPENDENT SCALING ROLES OF THE TWO
SCALE FACTORS

A. The thermal field dependence characterized
by the Yc scale factor

By inverting Eqs. �26�–�30�, we can easily recover the
asymptotical form for the interfacial properties of Eqs.
�4�–�7� from the asymptotic form of the master Eqs.
�31�–�33�. For example, the leading physical amplitudes B,
�0, and S0, can be estimated from the following relations:

B = �Zc�−1/2�Yc��ZM , �44�

�0 = ��c�−1��c�1−d�Yc��Z�, �45�

S0 = ��c�d−1�g*�−1�Zc�3/2�Yc��ZS. �46�

Similarly, from comparison of Eqs. �39� and �40�, the ampli-
tudes �0

± of the �bulk� correlation length can be estimated
from the following relation:

�0
± = �c�Yc�−�Z�

±. �47�

As expected, the leading amplitudes are combinations of the
fluid scale factors. However, we underline the universal hy-
perscaling feature of Eqs. �45� and �47�, where �0 and �0

±

appear unequivocally related only to the scale factor Yc. This
result is obtained from Widom’s scaling law

�d − 1�� = � �48�

with d=3 in our present study. Using Eqs. �45� and �47� and
Widom’s scaling law �see Eq. �48��, it is then easy, thanks to
the formal analogy between the scale dilatation method and
the analytic hypothesis of the renormalization theory, to vali-
date the well-known universal amplitude combination previ-
ously introduced �see Eq. �38��

R��
± = �c�0��0

±�d−1 = Z��Z�
±�d−1. �49�

We also underline the microscopic analogy between the
scale units ���c�−1 ,�c� of the one-component fluid and the
scale units �kBTc ,aIsing� used in Monte Carlo simulations of
the simple cubic Ising model, where aIsing is the spacing
lattice size �72�. Such simulations give �0

= �universal const��
kBTc

�aIsing�2 , �which compares to Eq. �45��,
and �0

+= �universal const��aIsing, �which compares to Eq.
�47��, to provide a Monte Carlo estimation of the above uni-
versal ratio �31,72�.

In addition to the universal combination of Eq. �49�, we
also briefly recall that equivalent universal combinations ex-

ist between the interfacial tension amplitude �0 and the heat
capacity amplitudes A± as the following form:

R�A
± = �c�0�A±��d−1�/d, �50�

where R�A
+

�0.275� �0.537�2/3R�A
− �33,52,53�. Such univer-

sal amplitude combinations are related to the mixed hyper-
scaling laws

�

d − 1
= � =

2 − �

d
�51�

which give common universal features for interfacial prop-
erties �with dimension d−1� and bulk properties �with di-
mension d=3�. ��0.11 is the universal critical exponent
associated to the singular heat capacity. The above Eq. �51�
can be obtained by combining Widom’s scaling law

�d − 1�� = �

�see Eq. �48�� and hyperscaling law

d� = 2 − � . �52�

Equation �52� means that the free energy of a fluctuating
bulk volume �d also tends to an universal value �expressed in
units of ��c�−1� for any system belonging to the Ising-like
universality class. We can then focus our interest in the sin-
gular part 
cV,p̄�
�*� of the heat capacity at constant volume
expressed per particle, along the critical isochore �ignoring
the critical and classical background parts of the total heat
capacity at constant volume�. Indeed, the heat capacity per
particle cV,p̄
� particle energy

temperature increment
� is the unique thermody-

namic property which can be made dimensionless only by
using the “universal” Boltzmann factor kB, i.e., without ref-
erence to �c and ��c�−1. Therefore, when the singular heat
capacity at constant volume, normalized per particle, obeys
the asymptotic power law


cV,p̄ =
A0,p̄

±

�
�
�*�−��1 + O��
�*�
�� �53�

along the critical isochore, one among the two dimensionless

amplitudes
A0,p̄

+

kB
and

A0,p̄
−

kB
is mandatorily a characteristic fluid-

particle-dependent number. From the basic hypothesis of the
scale dilatation method, this number should be related to Yc
and Zc in a well-defined manner to account for extensive and
critical natures of the fluid system, as will be shown below
�see Eq. �56��.

For a 3D Ising-system �31�, the singular part of the heat
capacity normalized by kB can be expressed in units of
�aIsing�d. In the case of the one-component fluid, the normal-
ized heat capacity is expressed in units of ��c�d, which is the
volume of the critical interaction cell. For the one-
component fluid subclass, the number of particles filling the
critical interaction cell is 1

Zc
, leading then to define the sin-

gular part of the master heat capacity per critical interaction
cell volume �neglecting quantum effects�, as follows:
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CS
* = ��Yc�2Zc�−1
cV,p̄

* �54�

with 
cV,p̄
* =


cV,p̄

kB
. As needed from thermodynamics, such

master heat capacity corresponds to a second derivative CS
*

=−
�2AS

*�T*�

�T*2 of a master free energy AS
*�T*� with respect to

master thermal field T* �we do not consider here the critical
contribution of an additive master constant Ac

* and the regu-
lar background contribution AB

*�T*� characteristic of each
one-component fluid�. Admitting now that the leading singu-
lar part of the master free energy behaves as AS

*

=
ZA

±

��1−���2−�� �T*�2−��1+O��T*�
��, the master asymptotic be-

havior of the heat capacity reads as follows �ignoring the
critical and background contributions due to derivatives�:

CS
* =

ZA
±

�
�T*�−��1 + �ZA

1,±�T*�
� . �55�

The constant values of the master amplitudes are
ZA

+
�0.1057�0.537ZA

−, so that ZA
−
�0.1967, in conformity

with their universal ratio
ZA

+

ZA
− �0.537 �33� for d=3. Therefore,

the corresponding typical asymptotic amplitudes A0,p̄
± in Eq.

�53� can be estimated from

1

Zc

A0,p̄
±

kB
= �Yc�2−�ZA

± , �56�

where the respective scale factor contributions �i.e., the mas-
ter nature of the critical interaction cell volume characterized
by 1

Zc
, and the field scale dilatation along the critical isochore

characterized by Yc�, are well-identified using a single am-
plitude which de facto characterizes the particle.

Now, for comparison with standard notations used in the
literature on fluid-related critical phenomena where all the
thermodynamic potentials are taken per unit volume, and not
per particle, we also introduce the heat capacity at constant
volume per unit volume 
cV=1=


cV,p̄

vp̄,c
�labeled here with the

subscript V=1�. Expressed in our above unit length scale
�Eq. �17��, the associated dimensionless form is


cV=1
* =


cV,p̄

kB
�

1

vp̄,c��c�−d =

cV=1

kB��c�−d . �57�

Obviously, 
cV=1
* is strictly identical to the usual dimension-

less form 
cV
*=
CV

Tc

Vpc
of the total singular heat capacity


CV=N
cV,p̄ of the constant total fluid volume V, filled with
the constant amount N of particles. Using the total Helmholtz
free energy A�T ,V ,N� where T ,V ,N are the selected three

natural variables, we obtain
CV

T =−� �2A
�T2 �

V,N
. From the corre-

sponding quantities normalized per unit volume
A�T,1,n=N

V
�

V we

obtain
CV

VT =−� �2�A
V

�
�T2 �

n
, which can be considered to define their

related singular dimensionless parts � A
V

�
S

*
=

A� T
Tc

,1,nc=
Nc

V �
Vpc

and

Tc
cV
*

T =−� �2�A
V

�
S

*

�� T
Tc �2 �

n=nc

along the critical isochore. Admitting

now that the leading singular term of the free energy diver-

gence behaves as � A
V

�
S

*
= A±

��1−���2−�� �
�*�2−��1+O��
�*�
��
�ignoring critical constant and regular background terms�,
the asymptotic behavior of the singular heat capacity is


cV
* =

A±

�
�
�*�−��1 + �A1

±�
�*�
� . �58�

Therefore, the leading amplitudes A± can be estimated from

A± = �Yc�2−�ZA
± , �59�

which relates A± only to the single scale factor Yc. However,
the implicit role �see Eq. �56�� of the particle number 1

Zc

filling the critical interaction cell cannot be ignored for basic
understanding of the master thermophysical properties of the
one-component fluid subclass.

As expected, using Eqs. �45� and �59�, we retrieve the
universal amplitude combinations of Eqs. �50�, such as

R�A
± = �c�0�A±��d−1�/d = Z��ZA

±��d−1�/d. �60�

Simultaneously, using Eqs. �47� and �59�, we also retrieve
the well-known universal quantities

AS
* � ��*�d 
 �T*�2 � CS

* � ��*�d = �R�
±�d = �Z��ZA

±�1/d�d

= ��±�A±�1/d�d, �61�

where R�
+
�0.2696 and R�

−
�0.1692, for d=3 �33�.

Summarizing the above results for �seven� singular be-
haviors �surface tension, ���-correlation length, ���-heat ca-
pacity, and ���-isothermal susceptibility�, we note that the
�five� Eqs. �44�–�47� and �58� close the hyperscaling univer-
sal features along the critical isochore above and below Tc, in
conformity with the two-scale-factor universality. Therefore,
among the three universal exponents �, �, and �, only one is
readily independent �see Eqs. �48� and �52��. The related
master–physical amplitudes Z�−�0, Z�

±−�±, and ZA
± −A±,

uniquely depend on Yc �see Eqs. �45�, �47�, and �59��. As a
partial but essential conclusion, amplitude �0 of the interfa-
cial tension, is only characterized by the scale factor Yc ac-
counting for the nonuniversal microscopic nature of each
fluid crossing its critical point along the critical isochore.

B. The order parameter density dependence characterized by
the Zc scale factor

The use of Eq. �35� to estimate the effective parameters of
Eqs. �1� or �10�, leads to the Ising-like expressions for the
parachor exponent

�a =
�

�
�62�

and the �asymptotical� parachor

Pa,0 =
Mmol

2�c

�Zc�1/2��cpcZ���a

ZM

= �Zc�3/2��c�d−�d−1��/�� ���c�−1Z���a

2ZM
� . �63�

In spite of the complex combination of scale factors, we note
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that Yc does not appear in the right-hand side of Eq. �63�.
However, as clearly shown in Sec. III A, Yc is the character-
istic scale factor of the critical isochoric path where interfa-
cial properties are defined. This amazing and important result
is entirely due to the hyperscaling universal feature associ-
ated to the critical isothermal path, as will be discussed be-
low.

Indeed, to close the discussion on hyperscaling in critical
phenomena, we need to introduce the two universal expo-
nents �	0.035 and �	4.82, characterizing universal fea-
tures of correlation function at the critical point and thermo-
dynamic function along the critical isotherm, respectively
�73�. � and � are related by the hyperscaling law

2 − �

d
=

� − 1

� + 1
. �64�

Equations �64� and �52� relate in an unequivocal manner the
two �independent� exponents � and � describing the thermo-
dynamics, and the two �independent� exponents � and � de-
scribing the correlations, uniquely via d. In addition, each
�thermodynamic-correlation� exponent pair, either �� ;��, or
�� ;��, characterizes each independent thermodynamic path
to reach the critical point, either the critical isothermal line
and the critical point itself, or the critical isochoric line, re-
spectively �27�.

Obviously, universal values of the corresponding ampli-
tude combinations have been theoretically estimated �31�.
We have already given the universal amplitude combination
�R�

±�d=A±��±�d �valid along the critical isochore�, associated
with the scaling law d�=2−�. Indeed, to close the presenta-
tion of the two-scale-factor universality, we can also consider
the universal amplitude combination

RD = D�
c�D̂����+1�/2 = Dn

c�D̂n���+1�/2 �65�

along the critical isotherm, associated with the hyperscaling
law of Eq. �64�. Here, we have anticipated �see below� the

introduction of the leading amplitudes D�
c �Dn

c� and D̂� �D̂n�
associated with the singular shape of the ordering field along
the critical isotherm and to the singular decreasing of the
correlation function at the critical point, respectively. In the

Dx
y, D̂x notations, �i� superscript y=c recalls for the nonzero

value of the order parameter density in a fluid maintained at
constant critical temperature; �ii� the hat recalls for the infi-
nite size of the order parameter density fluctuations in a criti-
cal fluid maintained exactly at the critical point; �iii� sub-
script x=� recalls for a thermodynamic potential which is
normalized per volume unit and a definition of the order
parameter density related to the mass density, namely, 
�̃

=
�−�c

�c
�then D�

c �D, where D is the customary notation of
this leading amplitude�; and �iv� subscript x=n recalls for a
thermodynamic potential which is normalized per particle
and a definition of the order parameter density related to the
number density, namely, 
m*= ��c�d�n−nc�.

Considering the �thermodynamic;correlation� amplitude

pairs �D�
c ; D̂�� or �Dn

c ; D̂n� defined along the critical isotherm
and at the critical point, and the �thermodynamic;correlation�
amplitude pair �A± ;�±� defined along the critical isochore,

from Eqs. �61� and �65�, a single amplitude characterizes
each thermodynamic path crossing the critical point, either at
constant critical temperature, or at constant critical density,
respectively. Considering the �interfacial;bulk� amplitude
pairs ��0 ;A±� and ��0 ;�±�, the previous section has shown
that Yc is precisely the single scale factor of the temperature
field which characterizes the critical isochore. Therefore, in
conformity with the two-scale-factor universality, we are
now concerned by the existence of the equivalent �interfa-
cial;bulk� amplitude pairs, which should involve Ising-like
leading amplitude of the parachor correlations and either D�

c

or D̂�. Closing their respective Zc dependence demonstrates
then that Zc is precisely the single scale factor of the ordering
field which characterizes the critical isotherm. Obviously, the
above Eq. �63� where P0 appears only Zc dependent is al-
ready in agreement with such a universal feature.

Starting with the scaling law

��� + 1� = 2 − � �66�

and using the hyperscaling law of Eq. �64�, we can recalcu-
late �a= �

� �see Eq. �62��. We obtain

�a

d − 1
=

2

d − �2 − ��
=

� + 1

d
�67�

with d=3. The unequivocal link between the Ising-like para-
chor exponent �a and either � or �, is now undoubtedly due
to mixed hyperscaling along the critical isotherm and at the
critical point itself, explicating the respective interface �d
−1� and bulk �d� dimensions. This Eq. �67� completes the
similar mixed hyperscaling link �

d−1 =�= 2−�
d �see Eq. �48��

between interfacial exponent � and either �, or �, along the
critical isochore.

To find the universal amplitude combinations associated
with Eq. �67�, we need to introduce an unambiguous defini-
tion of the parachor correlations from the corresponding
Wegner-like expansions expressed in terms of the order pa-
rameter density. The �master and physical� power laws

�* = Z̃��MLV
* ��a�1 + O��MLV

* �
/��� , �68�

�* = Dn
��
mLV

* ��a�1 + O��
mLV
* �
/���

= D�
��
�̃LV��a�1 + O��
�̃LV�
/��� �69�

are more appropriate than Eqs. �1� or �10� in the sense where
Eq. �68� �or Eq. �69�� acts as a two-dimensional equation of
state for the liquid-vapor interface �along the critical isoch-
ore�. The dimensionless amplitudes Dn

� and D�
� are called

Ising-like parachors to distinguish them from dimensional
Pa,0 �see Eq. �63�� called parachor. We recall that Eq. �69�
refers to the dimensionless interfacial tension �*� �

�cpc
. Now,

the superscript y=� in Dx
y notations, recalls for the thermo-

dynamic definition of the interfacial tension of a nonhomo-
geneous fluid where the order parameter density is spontane-
ously nonzero, along the critical isochore. As mentioned
above, x=n and x=� reflect the two forms 
m* and 
�̃ of
the order parameter density, leading to the right-hand side
forms of Eq. �69�. The related Zc dependence between Dn

�

and D�
� is
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Dn
� = �Zc��aD�

�. �70�

Using Eqs. �27� and �29� to compare the leading terms of
master and physical Eqs. �68� and �69�, we obtain

Dn
� = �Zc��d/2��aZ̃� = �Zc��+1Z̃� = �Zc�d�d−1�/�d−2+��Z̃�,

D�
� = �Zc��a/2Z̃� = �Zc���+1�/dZ̃� = �Zc��d−1�/�d−2+��Z̃�.

�71�

As expected, Eqs. �71� provide unequivocal determinations
of Dn

� and D�
� from the scale factor Zc �selecting either �a or

� or �, as independent exponent�.
We can define in a similar manner the Zc dependence of

Dx
c and D̂x introduced through Eq. �65�. First, the amplitudes

Dx
c are associated to the singular behavior of the ordering

field in a three-dimensional homogeneous fluid in contact
with a particle reservoir, fixing the nonzero value of the order
parameter density, and thermostated at constant �critical�
temperature T=Tc. In that thermodynamic situation, it is es-
tablished that the �master and physical� ordering fields obey
the following power laws:

H* = ± ZH
c �M*���1 + O��M*�
/��� , �72�


�p̄
* = ± Dn

c�
m*���1 + O��
m*�
/��� ,


�̃� = ± D�
c�
�̃���1 + O��
�̃�
/��� , �73�

where ZH
c 	252 is a master value for the one-component

fluid subclass. As in the above case of dimensionless inter-
facial tension, the right-hand side forms of Eqs. �73� refer to
distinct order parameter densities, 
m* and 
�̃, leading to
the following Zc dependence between Dn

c and D�
c:

Dn
c = �Zc��+1D�

c = �Zc�2d/�d−2��D�
c . �74�

In the case of a critical isothermal fluid, a convenient rewrit-
ing of the leading term in Eq. �73� is �46�

��� − ��,c�
�c

pc
=

p − pc

pc
= ± D�

c�
�*��. �75�

Using Eqs. �27� and �28� and accounting for dual definitions
of the ordering field-order parameter density with respect to
appropriate free energies, the comparison of the leading
terms in Eqs. �72� and �73� gives the following results:

Dn
c = �Zc��d/2���+1�ZH

c = �Zc�d2/�d−2+��ZH
c ,

D�
c = �Zc���+1�/2ZH

c = �Zc�d/�d−2+��ZH
c . �76�

Selecting then either �, or �, as an independent exponent,
Eqs. �76� relate unequivocally each respective physical am-
plitude Dn

c or D�
c, to the scale factor Zc.

Second, the amplitudes D̂x are associated to the singular
behavior of the dimensionless spatial correlation function

G*�
�*=0,
x*=0,r*= r
�c

�� � 1
r* �

1
�d−2+�� at the exact critical

point �r is the direct space position, x=n or x=� following
the order parameter density choice�. More precisely, intro-

ducing the static structure factor !x�T−Tc ,x−xc ,q�, where q
is the wavenumber in the reciprocal space, such as !x�T
−Tc ,x−xc ,0� takes the same dimension as the corresponding
isothermal susceptibility �see below and Ref. �31��, we de-
fine the following dimensionless singular form of the master
and physical structure factors:

X*�T* = 0,M* = 0,Q* � q*� � ẐG�Q*��−2, �77�

!n
*�
�* = 0,
m* = 0,q* = q�c� � D̂n�q*��−2,

!�
*�
�* = 0,
�̃ = 0,q* = q�c� � D̂��q*��−2, �78�

where ẐG is a master constant for the one-component fluid
subclass. Starting from the isothermal susceptibilities !T,n

= � �n
��p̄

�
T

and !T,�= � ��
���

�
T

associated with the order parameter
densities 
m* and 
�̃, respectively, it is easy to obtain the
following relation between the amplitudes of the right-hand
side of Eq. �78�:

D̂n = �Zc�−2D̂�. �79�

Similarly, using Eqs. �77� and �78�, and adding the relations
between the master isothermal susceptibility X*= � �M*

�H* �
T*

and their associated physical dimensionless forms �neglect-
ing quantum effects�, we obtain the following relations:

�Zc�dD̂n = ẐG,

ZcD̂� = ẐG. �80�

Each one of Eqs. �80� gives the expected unequivocal link

between D̂n or D̂�, and Zc. We note that D̂n or D̂�, and Zc are
true critical numbers, i.e., dimensionless quantities defined at
the critical point, exactly. One among these critical numbers
characterizes the selected one-component fluid. Therefore,
the above link is “basic” because it only depends on the
hypothesized linear relation between master and physical
conjugated �ordering field-order parameter density� vari-
ables. Eliminating Zc between Eqs. �76� and �80� provides
the universal amplitude combination of Eq. �65�, which
closes the universal features along the critical isotherm and
at the exact critical point, in conformity with the two-scale-
factor universality. Finally, Eqs. �56� and �80� are the neces-
sary closure equations which unequivocally relate the two
�independent� leading amplitudes and the two �independent�
scale factors characteristic of each one-component fluid, se-
lecting � and � as two �independent� critical exponents.

From Eq. �71� and Eqs. �76� or �80�, associated with the
hyperscaling law of Eq. �67�, it is immediate to construct the
following new combinations between interfacial amplitudes
and bulk amplitudes, whose values are expected to be uni-
versal

RD� =
Dn

c

�Dn
��d/�d−1� =

D�
c

�D�
��d/�d−1� =

ZH
c

�Z̃��d/�d−1�
, �81�
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RD̂� = D̂n�Dn
���d−2+��/�d−1� = D̂��D�

���d−2+��/�d−1�

= ẐG�Z̃���d−2+��/�d−1�. �82�

To complete our understanding of the universal features
related to a �constrained or spontaneous� nonzero value of
the order parameter density, we must also compare the bulk
properties of each �liquidlike or gaslike� single phase at criti-
cal temperature T=Tc, and the bulk properties of each �liquid
or gas� coexisting phase in the nonhomogenous domain T
�Tc �admitting then a symmetrical one-component fluid
close to the critical point�. In these comparable three-
dimensional situations where the symmetrized order param-
eter density can take the same nonzero value at two different
temperatures, the existence of universal proportionality �in
units of ��c�−1� is expected for the singular bulk free energy
E* of a homogeneous phase, either maintained at constant
�critical� temperature T=Tc �i.e., bulk free energy

V �D�
c�
�̃��+1

�Dn
c�
m*��+1�, or at constant �critical� volume at T below Tc

�i.e., bulk free energy
VL,V

�
A−

��1−���2−�� �
�*�2−��. We then account for

the thermodynamic constraints for coexisting phases, ex-
pressed by �
�*�� � �
�̃�

B�
�1/�

� � �
m*�
Bn

�1/�
, and for the universal

features above and below the critical temperature along the
critical isochore, expressed by the universal ratio A+

A−

�0.537. As a result, we obtain the following universal am-
plitude combinations �with B��B and Bn= �Zc�−1B, where B
is the customary notation of this leading amplitude, see Eq.
�4��:

�QB
±��+1 =

B�+1

A± D�
c =

�Bn��+1

A± Dn
c . �83�

This amplitude combination is related to the cross-scaling
laws �see Eqs. �51� and �66��

d�

�
=

2 − �

�
= � + 1. �84�

Here, Eq. �84� combines exponent ratios �
� or 2−�

� , which
caracterize bulk properties expressed as a function of the
order parameter density in the nonhomogeneous domain, to
the exponent � which characterizes the ordering field as a
function of the order parameter density along the critical iso-
therm. Equations �81� and �83� imply that the Ising-like para-
chors D�

� �Dn
��, can also be expressed in terms of the ratio

B�+1

A±
� �Bn��+1

A±
�, eliminating then D�

c �D�
c�. As a matter of fact,

despite an explicit Yc dependence in the amplitudes B
� �Zc�1/2�Yc�� and A±� �Yc�2−�ZA

±, their ratio B�+1

A± always
takes appropriate forms to ensure the disappearance of the
Yc-scale factor, and only reflects hyperscaling attached to the
critical isotherm, which is characterized by the Zc-scale fac-
tor, uniquely. As a consequence, we obtain the universal
combinations

�QB
±��+1

RD�

= �Dn
��d/�d−1� �Bn��+1

A± = �D�
��d/�d−1�B

�+1

A±

= �Z̃��d/�d−1� �ZM��+1

ZA
± .

�85�

Similarly, we note that the amplitude products "±B�−1 or
"n

±�Bn��−1 are associated with the cross-scaling laws

d�

��� + 1�
=

�

�
=

1

� − 1
�86�

which also reflect hyperscaling attached to the critical iso-
therm. Here, "±�"�

± and "n
±= �Zc�−2"± are the leading am-

plitudes of the singular behavior of !̃T,� and !T,n
* , while �

�1.24 is the related critical exponent �where "± are the cus-
tomary notations along the critical isochore, see below, Eq.
�87��. The �physical� dimensionless susceptibilities obey the
power laws

!̃T,� = "±�
�*�−�
1 + �
i=1

i=�

"i
±�
�*�i
� ,

!T,n
* = "n

±�
�*�−�
1 + �
i=1

i=�

"i
±�
�*�i
� . �87�

The corresponding �two-term� singular behavior of the
master susceptibility X*= �Zc�d!T,n

* =Zc!̃T,�, is

X* = Z!
±�T*�−��1 + Z!

1,±�T*�
 + ¯ � , �88�

where Z!
+�0.119 and Z!

−�0.0248 are the master values of

leading amplitudes, with universal ratio
Z!

+

Z!
− = "+

"− �4.79 �43�.
Now, the explicit Yc dependences B� �Zc�1/2�Yc�� and "±

� �Zc�−x�Yc�−�Z!
± disappear in their combination "±B�−1, due

to Eq. �86�. This latter product reflects hyperscaling attached
to the Zc-scale factor of the critical isotherm, uniquely. Intro-
ducing the universal combination

R! = "+B�−1D = "n
+�Bn��−1Dn

c �89�

to eliminate D�
c �D or Dn

c using Eqs. �81� and �89�, we ob-
tain the following universal combinations which contain the
Ising-like parachors:

R!

RD�

= �Dn
��d/�d−1�"n

+�Bn��−1 = �D�
��d/�d−1�"+B�−1

= �Z̃��d/�d−1�Z!
+�ZM��−1.

�90�

Summarizing the results for the above �seven� singular
properties �surface tension, order parameter density, ordering
field, ���-heat capacity, and ���-isothermal susceptibility�,
we note that �three� Eqs. �65�, �83�, and �89�, and �two� uni-

versal ratios
ZA

+

ZA
− = A+

A− ,
Z!

+

Z!
− = "+

"− =
"n

+

"n
− , close the hyperscaling uni-

versal features, at the critical point, along the critical iso-
therm, and in the nonhomogeneous domain, in conformity
with the two-scale-factor universality. Therefore, among the
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exponents �, �a, �, and exponent ratios 2−�
� , �

� , only one is
really independent �see Eqs. �64�, �67�, �84�, and �86��. The

related master-physical amplitudes Z̃�−Dx
�, ZH

c −Dx
c, ẐG

− D̂x, and the related master-physical combinations
ZA

±

�ZM��+1

− A±

B�+1 , and Z!
±�ZM��−1−"±B�−1, are uniquely Zc dependent

�see Eqs. �71�, �76�, �81�, �85�, and �90��. As a partial but
essential conclusion, the Ising-like parachor of the interfacial
tension, expressed as a function of the order-parameter den-
sity, is only characterized by the scale factor Zc proper to
account for nonuniversal microscopic nature of each fluid at
its critical point or crossing them along the critical isotherm.

IV. CONCLUSIONS

In contrast with all previous studies on the parachor cor-
relations, the present estimation of the behavior of interfacial
tension as a function of the density difference of the coexist-
ing vapor and liquid phases in the critical region, is made
without adjustable parameter when Qc

min= ���c� ,�c ,Zc ,Yc� is
known for a selected �nonquantum� one-component fluid.
The interfacial-bulk universal features of exponent pairs
�� ;�� and �� ;�� or amplitude pairs ��0 ;A±� and ��0 ;�±�
indicate that the singularities of the surface tension, the �ther-
modynamic� heat capacity, and the �correlation� length, ex-
pressed as functions of the temperature field along the criti-
cal isochore, are well characterized by a single characteristic
scale factor. Using the scale dilatation method, we have
shown that this �fluid-dependent� scale factor is precisely Yc.
Similarly, the interfacial-bulk universal features of exponent
pairs ��a ;�� and ��a ;�� or amplitude pairs �Dx

� ;Dx
c�, and

�Dx
� ; D̂x� indicate that the singularities of the surface tension,

the �thermodynamic� ordering field and susceptibility, and
the �correlation� length, expressed as functions of the order
parameter density along the critical isotherm and in the non-
homogeneous domain, are well characterized by a single
characteristic scale factor. Using the scale dilatation method,
we have also shown that this �fluid-dependent� scale factor is
precisely Zc. Moreover, the disappearance of the isochoric
scale factor Yc in the estimation of the �Ising-like and effec-
tive� parachors is here well understood in terms of hyperscal-
ing. Yc and Zc are two independent characteristic numbers.
They are fundamental for future developments of parachor
correlations. Such results must also be accounted for, in
equations of the saturated vapor pressure curve, the enthalpy
of formation of the vapor-liquid interface and, more gener-
ally, in ancillary equations where adjustable parameters can
be estimated using a limited number of well-defined fluid-
dependent quantities including Yc and Zc.

Since the present approach accounts for complete univer-
sal features of critical phenomena, thanks to the scale dilata-
tion method, in the absence of theoretical prediction for the
surface tension, Fig. 4 may also be useful for correlating
interfacial properties by master equation of the correlation
length, incorporating a phenomenological contribution of the
confluent corrections to the asymptotic limit analyzed here.
As a special mention, the complete classical-to-critical cross-
over predicted from the field theory framework can be used

with an exact knowledge of the density domain where the
correlation length and the interface thickness reach the order
of magnitude of the microscopic molecular interaction.
When the two-phase fluid properties change from the critical
point to the triple point in such a controlled situation, the
introduction of supplementary parameters, either having
crossover nature �such as the crossover temperature for ex-
ample�, or having empirical origin �such as the acentric fac-
tor, for example�, should then be made to discriminate the
nonuniversal character proper to each fluid system revealed
from Fig. 4 at large values of MLV

* �or from Fig. 3 of Ref.
�29� at large values of T*�. However, in all cases, any supple-
mentary parameter would be used in conformity to the above
master singular behavior of the one-component fluid sub-
class, for which the two scale factors are now specified in
terms of thermodynamic continuity across the critical point
�26,74�.

APPENDIX: PARACHOR CORRELATION IN THE
NONHOMOGENEOUS DOMAIN

We have shown that the power law Z̃��Mth
* ��a �see Eq.

�36��, where Mth
* can be estimated as a modified theoretical

function of T*�0, provides an asymptotic scaling behavior
which agrees with the available experimental results in the
range MLV

* �MPAD
�1f� �0.04 �see Figs. 4�a� and 4�b��. In this

range close to the critical point, the Ising-like universal fea-
tures estimated from the massive renormalization scheme are
then correctly accounted for, in conformity with a �dimen-
sionless� fluid characterization which only uses the two scale
factors Yc and Zc.

To magnify the relative master behavior at large values of
MLV

* , i.e., beyond the preasymptotic range MLV
* �MPAD

�1f�

�0.04, we have reported the �%� residuals

R�PAD
* = 100
 �*

Z̃��Mth
* ��a

− 1� �A1�

as a function of MLV
* �Mth

* in Fig. 5�a�, using linear scales.
We have also reported the values MPAD

�1f� �see Eq. �41��,
MEAD

�1f� �see Eq. �42��, and MCIC �see Eq. �43��, which char-
acterize the finite distances to the critical point where �th

*

�40, �th
* �3, and �th

* �1, respectively �as previously dis-
cussed in Sec. II D�. This figure reveals the unambiguous
nonuniversal nature of each fluid at large distance from the
critical point, i.e., when �th

* �
1
2 . Moreover, the observed mas-

ter behavior in the extended asymptotic domain MPAD
�1f�

�MLV
* �MEAD

�1f� �0.16, i.e., 40��th
* �3, requires the intro-

duction of a master correction which can reach −�10–20�%
at the largest extension MEAD

�1f� �0.16.
To account for this correction in a quantitative manner, we

have used the following convenient form:

R�mas
* = − 100A� exp
− B�� 1

Mth
* − ln�Mth

* ��� �A2�

which has two adjustable master parameters �A� and B�� to
control the following main features: �i� within the Ising-like
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preasymptotic domain, this function takes zero-value which
preserves the Ising-like universal features contained in
Mth

* ��T*��, only characterized by Yc and Zc and �ii� beyond
the Ising-like preasymptotic domain, this function must pro-
vide an easy control of supplementary adjustable parameters
needed to recover each real fluid behavior at large distance
from the critical point.

Practically, the master values A�=0.575243 and B�

=0.302034 of the adjustable parameters were thus obtained
by optimizing the fit on the experimental % residuals of the
normal fluids Xe, Kr, N2, and O2, as illustrated by the corre-
sponding black full curve in Fig. 5�a�. For any other selected
fluid, it was then easy to estimate the related “nonuniversal”

deviation, expressed in %, i.e., �R�*=100� R�PAD
*

R�mas
* −1�, as

shown in Fig. 5�b�. We observe that the larger the value of

the renormalized order parameter density, the more the fluid
behaviors differentiate and the “larger” is the deviation �in
amplitude and shape� from the master crossover behavior.

The theoretical estimation of these fluid differences, for
example, in the range of the VLE line which includes the
temperature value T=0.7Tc where the acentric factor is de-
fined, is out of the present understanding of any fluid theory.
However, we can use a practical approach detailed in Ref.
�75�, where the main objective is to recover consistency with
the usual description of the surface tension at large distance
from the critical point by the equation

� = �0,e�
�*��e. �A3�

In the above effective power law, �0,e and �e are the two
adjustable parameters which characterize each one-
component fluid. Indeed, the noticeable result is a quasi-
constant value of �e which is found in the 1.2–1.3 range for
most of the fluids, but which significantly differs from the
mean-field value �MF= 3

2 , as mentioned in our Introduction.
In this Appendix, we limit the analysis to the Sg and � data
which are tabulated as a function of T data in Refs. �57,58�,
for eight HCFCs and HFCs listed in Table I �for the complete
study see Ref. �75��. As in the large number of experimental
works related to the determination of the surface tension,
only the squared capillary length data were effectively mea-
sured from differential capillary rise method, as a function of
temperature. Then the surface tension data have been calcu-
lated using Eq. �6�, where the density difference �L−�V was
estimated from published ancillary equations for the liquid
density and vapor density, along the VLE line. Therefore,
introducing the critical temperature Tc and the critical den-
sity �c of each selected fluid given in the table, we can re-
calculate the 
�LV

* data at each tabulated value of Tc-T, using
the equation


�LV
* =

�

g�cSg
, �A4�

where g=9.80665 m s−2 is the Earth’s gravitational accelera-
tion.

We have fitted the tabulated � data, using Eq. �A3�. In
addition we have also fitted the tabulated Sg and recalculated

�LV

* data, using the following equations:

Sg = S0,e�
�*��e, �A5�


�LV
* = Be�
�*��e. �A6�

Thus, we have checked the consistency of the above results,
by fitting the tabulated � data as a function of the recalcu-
lated 
�LV

* data, at the same tabulated Tc-T data, using the
following “parachor” equation:

� = �0,e�
�LV
* ��a,e. �A7�

The adjustable values of �0,e, �e, S0,e, �e, Be, �e, �0,e, and
�a,e, are reported in Table III and permit to validate the in-
terrelations �e=�e−�e, �a,e= �1−

�e

�e
�−1

, Be=
�0,e

g�cS0,e
, and �0,e

=
g�cS0,e

�Be���e/�e�−1 . As a conclusive remark, it appears that Eqs. �A3�
and �A7� are explicit results due to the initial use of “power

FIG. 5. �Color online� lin-lin scale. �a� Residuals �expressed in
%� for the experimental master parachor from reference to the as-
ymptotical master parachor calculated by Eq. �36�, as a function of
the master order parameter density; the full black curve corresponds
to Eq. �A2� �see text�. �b� Deviation �expressed in %� of the experi-
mental residuals estimated in part �a�, from reference to the full
black curve of Eq. �A2�.
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laws” �see Eqs. �A5� and �A6�� to fit the “measured” Sg data
and 
�LV

* data, respectively, in the same restricted tempera-
ture range. The interfacial properties Sg, �L−�V, and �, of
each fluid are then characterized by two amplitude-exponent
pairs, i.e., four adjustable parameters �in addition to the
needed critical parameters which characterize the liquid-
vapor critical point�. Moreover, in such a self-consistent re-
sult of the fitting, the relative error bar on the surface tension
data can then be readily approximated by the sum of the
relative error bars on the squared capillary length and coex-
isting relative density measurements �thus including the rela-
tive uncertainty on the �c value, generally of the order of
1%�.

In the next step, for each tabulated temperature, we have
estimated: �1� the renormalized surface tension

�tab
* = ��c�d−1�c� �A8�

using the tabulated � data, and �2� the master surface tension

�mas
* = Z̃���Zc�1/2
�LV

* ��a�1 − A� exp
− B�� 1

�Zc�1/2
�LV
*

− ln��Zc�1/2
�LV
* ���� �A9�

using the recalculated 
�LV
* data. The % deviations �R�mas

=100� �tab
*

�mas
* −1� at each value MLV

* = �Zc�1/2
�LV
* have been

fitted using the following power law:

�R�mas
= 100� f

*�MLV
* �pf , �A10�

where � f
* and pf are two adjustable parameters given in

Table III. As a final result, the parachor correlation now reads

�* = Z̃��MLV
* ��/��1 − A� exp
− B�� 1

MLV
* − ln�MLV

* ���
+ � f

*�MLV
* �pf� , �A11�

where the “confluent” correction to the leading term contains
two parts: �i� a master contribution which is the same for all
the pure fluids and �ii� a nonuniversal contribution which is
characterized by the exponent-amplitude pair pf ;� f for each
pure fluid. Figure 6 gives the corresponding residuals R�f

*

=100��tab
*

�* −1� over the temperature range of the VLE line
covered by the capillary rise measurements. In this figure, we
have also reported each error-bar contribution of the experi-
mental accuracy of ±0.2 mN m−1 claimed by the authors �ig-
noring the corresponding contribution of the claimed accu-
racy �±20 mK� on temperature measurements�.

We conclude that the above practical approach based on
the correct master description of the asymptotic Ising-like
domain for the one-component fluid subclass, provides an
easy control of the adjustable parameters needed to recover
the experimental behavior at large distance from the critical
temperature.

FIG. 6. �Color online� lin-lin scale. Residuals �expressed in %�
for the experimental master parachor of eight HFCs and HCFCs
�see Refs. �55–58��, from reference to the master parachor calcu-
lated by Eq. �A11�.

TABLE III. Fitting values of the effective exponent-amplitude parameters for power law description by Eqs. �A3�, �A5�–�A7�, and �A11�
of experimental interfacial properties �see Refs. �55–58�� of eight HFCs and HCFCs.

Fluid �e

S0,e

�mm2� �e Be �e

�0,e

�mN m−1� �a,e

�0,e

�mN m−1� pf � f
*

HFC-32 0.935257 8.88119 0.330003 2.00938 1.26526 74.0278 3.833665 5.098332 1.75798 0.145884

HFC-125 0.9220591 4.985323 0.3182363 1.897228 1.240295 52.68437 3.896303 4.342498 5.014323 0.5406810

HFC-134a 0.8912903 5.830025 0.3115459 1.876448 1.202836 50.00357 3.859691 4.843207 1.087740 0.1497465

HFC-152a 0.904293 8.575218 0.316563 1.903243 1.220856 59.05906 3.856065 4.936506 1.043043 0.1492084

HCFC-123 0.9785701 6.054669 0.2967141 1.795946 1.275284 59.07641 4.298258 4.769023 2.923514 0.4197302

HCFC-124 0.9073108 5.270590 0.289472 1.768259 1.196783 51.72997 4,116035 4.912059 2.015201 0.3815439

HCFC-141b 0.9246801 7.477146 0.3048532 1.794835 1.229533 60.5395 4.033156 5.721538 1.678934 0.1952588

HCFC-142b 0.9173884 7.002359 0.3062231 1.903243 1.223612 55.82877 3.996039 5.114294 1.939504 0.2315527
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